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I show that for a certain range in its parameter space, a self-attracting self-avoiding loop (SASAL) can
be mapped onto the hull of a percolation cluster in two dimensions. The inside (outside) of this loop at-
tracts itself with interaction energy €, (e_). This mapping is used to argue that if € . >€_, the collapse
of the SASAL occurs in not one but two stages as the temperature is reduced: the SASAL first collapses
to form a “branched polymer” and then at lower temperatures collapses still further to become a com-

pact globule.

PACS number(s): 36.20.Ey, 64.60.Ak, 64.60.Kw

At high temperatures, a polymer chain in a good sol-
vent behaves essentially as if it were a self-avoiding walk
(SAW): Its mean radius of gyration grows as (R ) ~N?,
where v has the same value as for the SAW and N is the
molecular weight [1]. As the temperature T is reduced,
however, the short-ranged van der Waals attraction be-
tween monomers becomes increasingly important. At
low temperatures, the polymer chain is in a collapsed
state, and the exponent v takes on the value 1/d, where d
is the dimension of space.

For decades, it was believed that the collapse must al-
ways occur at a single temperature, the theta temperature
To. If there is a single collapse transition, it is a tricriti-
cal point [1]. Recently, however, Orlandini et al. [2]
discovered that a certain self-attracting self-avoiding trail
on the Sierpinski gasket collapses in two stages: between
the high-temperature SAW phase and the fully collapsed
low-temperature phase, there is a lattice animal or
“branched polymer” phase. They also presented numeri-
cal evidence that, as the temperature is reduced, a self-
attracting 2-tolerant trail on the square lattice collapses
to form a branched polymer. (A 2-tolerant trail can visit
a site no more than twice.)

The results of Orlandini et al. are intriguing, but they
suffer from certain limitations. The Sierpinski gasket is a
regular fractal lattice with the appealing attribute that
many problems can be exactly solved on it. However,
critical phenomena on the Sierpinski gasket are patholog-
ical in several important respects [3]. In addition, both of
the models studied by Orlandini et al. have only partial
self-avoidance: self-avoiding trails can revisit sites but not
bonds. Finally, the self-attracting 2-tolerant trail was
studied using exact enumerations of relatively short
walks, and so the correct asymptotic behavior may not
have been found. It is therefore unclear whether there
are real polymer chains that have a branched polymer
phase.

Perhaps the most important tool used in the theory of
the 0 polymers in two dimensions (2D) has been the map-
ping introduced by Coniglio et al. [4]. These workers
showed that at its collapse transition, a self-attracting po-
lymer ring on the hexagonal lattice can be mapped onto
the surface (or “hull”) of a percolation cluster at thresh-
old. Since it has been proven that the radius-of-gyration
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exponent v is 4 for the perimeter of a percolation cluster
at threshold in 2D [5], the value of the size exponent at
the tricritical point v, must also be %. Similar ap-
proaches to the collapse transition of a polymer chain in
2D have been developed by others [6,7].

In this Rapid Communication, I consider a certain
self-attracting self-avoiding loop (SASAL) in 2D. The in-
side of the loop attracts itself with interaction energy €,
while the outside of the loop attracts itself with energy
€_. The energies €, and €_ may differ. I demonstrate
that for a range of parameter values, the SASAL can be
mapped onto the hull of a percolation cluster in 2D. This
mapping generalizes the mapping of Coniglio et al. to
the case €, 7¢_. The mapping is used to argue that the
SASAL has three distinct phases—in addition to the
high-temperature phase and the fully collapsed low-
temperature phase, there is a lattice animal phase. If
€, >¢€_, the collapse of the SASAL occurs in not one but
two stages as the temperature is reduced: the SASAL
first collapses to form a ‘“‘branched polymer” and then at
lower temperatures collapses still further to become a
compact globule. The SASAL is therefore a strictly self-
avoiding loop in 2D Euclidean space that has a two-stage
collapse analogous to that found by Orlandini et al.

Consider the equilibrium statistical mechanics of a
self-avoiding loop (SAL) of N occupied bonds on the hex-
agonal lattice (Fig. 1). For simplicity, we shall take one
of the bonds in the loop to be held fixed. Note that the
lattice dual to the hexagonal lattice is a triangular lattice.
If one of the edges of a hexagon is occupied, we will say
that the triangular lattice site at the center of this hexa-
gon is “adjacent” to the occupied edge. Similarly, we say
that this site is adjacent to the SAL itself.

To assign an energy to a given loop configuration L, we
first color the dual lattice sites adjacent to the loop. Sites
inside the loop are colored black, while sites outside the
loop are colored white. We assign an energy €, =0 to
the black sites and an energy €_ =0 to the white sites.
Let the number of black sites be n . (L) and the number
of white sites be n_(L). The energy of a configuration L
isE(L)=e,n (L)+e_n_(L).

For ¢, =¢e_=0, our SASAL is a SAL without self-
attraction. On the other hand, if either £, or €_ is posi-
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FIG. 1. Two SASAL’s of 22 monomers (bold solid lines) on
the hexagonal lattice (solid lines). Sites on the dual triangular
lattice are black (solid circles), white (open circles), or uncolored
(X’s). The SASAL on the left has energy 8¢, + 14¢_, while the
one on the right has energy 5S¢ +13¢_.

tive, the loop is self-attracting, since configurations L
with the smallest values of n (L) and n_(L) have the
lowest energies (Fig. 1).

Our SASAL reduces to the polymer loop of Coniglio
et al. [4] for e, =e_. The study of this polymer loop has
provided considerable insight into the nature of the 6
point in 2D. To understand the physical significance of
our SASAL for general values of £, and £_, consider the
case €, >¢_. In this case, the inside of the SAL attracts
itself more strongly than the outside does. A polymer
loop adsorbed on a solid substrate is usually modeled by a
2D SASAL. If the polymer loop has different side groups
on its inner and outer “surfaces,” and if the inner side
groups attract each other more strongly than the outer
side groups do, then the polymer loop should be modeled
by a SASAL withe >¢e_.

SASAL’s have also been studied as simple models of
2D “vesicles” [8-10]. The inner surface of a real three-
dimensional vesicle could attract itself more strongly
than the outer surface does if the inner and outer surfaces
have different chemical compositions. Vesicles of this
kind can be treated using techniques similar to those ap-
plied here, and will be discussed elsewhere [11].

Just as in the case of the self-attracting polymers intro-
duced by Coniglio et al. [4] and Duplantier and Saleur
[6], there are attractive interactions between nearest-
neighbor and next-nearest-neighbor pairs of monomers in
our SASAL. There are interactions only between
nearest-neighbor pairs of monomers in traditional lattice
models of the 6 point [1]. Our SASAL has a single col-
lapse transition when € , =¢_. This transition is referred
to as a 0’ point to distinguish it from the usual 0 point
(4]. :

The partition function for a loop of N monomers is

Z(x’y,N):Exn+(L’)yn,(L’) )
'z
Here B=T"!, x =exp(—pBe.), y =exp(—Be_), and the
sum runs over all SAL configurations L’. The Boltzmann
weight of the loop configuration L is

(1)

n+(L)yn_(L)

w(L,x,y,N)=x /Z(x,y,N) . (2)
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I will now show that for x +y =1, our SASAL can be
mapped onto the hull of a site percolation cluster on the
hexagonal lattice. Following Ref. [12], we shall take the
hull of a percolation cluster to be a SAL on the hexagonal
lattice. Consider an arbitrary bond in the hull. By
definition, one of the triangular lattice sites adjacent to
this bond is occupied, while the other is not. If the tri-
angular lattice sites inside the hull and adjacent to it are
occupied, the hull is an external percolation hull; other-
wise, it is an internal percolation hull.

Consider an arbitrary self-avoiding loop L on the hex-
agonal lattice. The number of triangular lattice sites that
are adjacent to L and that are inside [outside] the loop
will be denoted n_ (L) [n_(L)]. The probability that a
given bond B belongs to an external percolation hull of
length N is given by

ny (L") n_(L"

P(p,N)=3p (1—p) ~ . (3)

<
Here the sum runs over all SAL’s L’ of length N that
contain B. If it is given that the bond B belongs to an
external hull of length N, the probability of a particular
external hull configuration L is

_ n (L) n_(L

" Pa—p)"-" PN . @)

We are now ready to construct our mapping. Combin-
ing Eqgs. (3) and (4) with Egs. (1) and (2), we obtain

Z(p,1—p,N)=P(p,N) , (5)
and
w(L,p,1—p,N)=p(L,p,N) . (6)

p(L,p,N)

Analogous relations exist between the SASAL and inter-
nal percolation hulls, but these will not be needed, and so
we will not pause to discuss them.

We have shown that for x +y=exp(—pBe,)
+exp(—pPBe_)=1, our SASAL is equivalent to an exter-
nal percolation hull for site percolation on the hexagonal
lattice with p =x. Accordingly, we will refer to the line
x +y =1 in the parameter space of the SASAL as the
“percolation line.”

I shall now discuss the phase diagram of the SASAL.
We shall confine our attention to the case e, 2e_. In
our discussion, we will use the mapping just described in
combination with what is known about the behavior of
percolation hulls in 2D.

At T = oo, the self-avoiding loop is not self-attracting,
and it has the same scaling properties as a SAW. Thus,
the radius-of-gyration exponent v is exactly 3 [13]. The
mean area A4 enclosed by the SASAL scales as 4 ~N3/2,
and so the area enclosed by the SASAL has fractal
dimension 2 [8,10]. Throughout its entire high-
temperature phase, the scaling properties of the loop are
the same as at T=o. As the temperature is reduced
from infinity, on the other hand, the effect of the attrac-
tive interactions becomes more important. At low tem-
peratures, the SASAL collapses and the radius-of-
gyration exponent takes on the value v=1.

Consider the case e, =e_. For x =y =1, the SASAL
is equivalent to the external hull of a site percolation
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cluster on the triangular lattice at p=1. Using this fact,
Coniglio et al. [4] argued that x =y =1 is the 6’ point,
and that Ty =€, /In2. The value of v at the 6’ point, v,,
is exactly %.

We now turn to the case €, >¢e_. Recall that for
x +y =1, the SASAL is equivalent to the hull of a per-
colation cluster with p =x. For p <p =1, only finite
percolation hulls exist. In this regime, percolation clus-
ters with linear dimensions large compared to the corre-
lation length £ have the same fractal dimension as lattice
animals in 2D [14]. Using a transfer-matrix method,
Derrida and Stauffer [15] obtained the estimate
D =1.56071+0.0004 for the fractal dimension of lattice
animals in 2D. Comparable estimates were obtained by
others [16,17]. The fractal dimension of the hull cannot
exceed the fractal dimension of the cluster itself, and so
the fractal dimension of the hull of a lattice animal must
certainly be less than 2. Thus, the segment of the per-
colation line with p <p, cannot lie in the low-
temperature phase of the SASAL. This segment cannot
lie in the high-temperature phase of the SASAL either, as
I now argue. A 2D lattice animal has fractal dimension
D =1.5607%0.0004, and so its hull encloses an area with
a fractal dimension of roughly 1.56. This means that the
SASAL encloses an area with a fractal dimension
D =1.5607£0.0004 on the segment of the percolation
line with p <%. In contrast, the area enclosed by the
SASAL in its high-temperature phase has fractal dimen-
sion 2. Hence, the segment of the percolation line with
p <p. cannot lie in the high-temperature phase of the
SASAL.

We have seen that the segment of the percolation line
with p <1 lies in a phase distinct from both the high- and
low-temperature phases, as shown in Fig. 2. In this
phase, the SASAL has the same fractal dimension as the
hull of a 2D lattice animal. We refer to this phase of the
SASAL as the “lattice animal” or “‘branched polymer”
phase.
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FIG. 2. Schematic phase diagram of the SASAL for x <y.
The high-temperature, low-temperature, and lattice animal
phases are labeled I, II, and III, respectively. The dashed line is
the percolation line x +y =1.
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Although the fractal dimension of the hull of a 2D lat-
tice animal has not yet been determined, there is reason
to believe that it is the same as that of the lattice animal
itself. Lubensky and Isaacson [18] argued that trees and
lattice animals are in the same universality class, and this
is supported by numerical evidence (see Ref. [19] and
references therein). Clearly, the bulk and hull fractal di-
mensions coincide for trees. Accordingly, I expect that
the same is true of lattice animals. If this is so, the fractal
dimension of a lattice animal hull is roughly 1.56 in 2D.
(None of the results that follow depends on the validity of
this speculation.)

At first sight, it is perhaps surprising that the SASAL
has a phase in which its scaling behavior is the same as
that of the hull of a lattice animal. To shed light on this,
we consider the SASAL with €, >0 and e _=0. For sim-
plicity, we shall discuss the case in which N =4M +2,
where M is a positive integer, but similar considerations
hold for general values of N. An allowed conformation of
the SASAL can be constructed as follows: We begin with
a tree of M occupied sites on the dual triangular lattice.
(A tree is a cluster of sites with no loops.) The corre-
sponding SASAL configuration on the hexagonal lattice
consists of those bonds that belong to one and only one
hexagon with an occupied dual lattice site at its center.
It can be shown that this configuration is a ground state
of the SASAL, and that all the ground states of the
SASAL can be constructed in this fashion [11].

In the limit in which €, — o and €_=0, only the
ground-state configurations of the SASAL are allowed
states. Thus, for x =0 and y =1 the SASAL with
N =4M +2 monomers can be mapped onto a tree of M
sites on the dual lattice. We conclude that for x =0 and
y =1 the SASAL has the same scaling behavior as a lat-
tice tree. Since lattice trees are in the same universality
class as lattice animals [18,19], we have confirmed the ex-
istence of a lattice animal phase.

Let us now consider the general case in which
O0<e_<g <. In this case, the SASAL must pass
through the lattice animal phase as the temperature is re-
duced because y =x"" Thus, the collapse of the
SASAL does not occur at a single temperature. Instead,
two distinct phase transitions occur as the temperature is
reduced. When the temperature is reduced below a cer-
tain temperature 7°;, the attraction between the inner
walls of the SASAL leads to its partial collapse. For tem-
peratures less than T; but greater than a second transi-
tion temperature T,, the SASAL is treelike (Fig. 3). As
the temperature is further reduced, the attraction be-
tween the branches of the SASAL becomes increasingly
important. At the transition temperature T =T,, the

U
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FIG. 3. Sketches of the SASAL for (a)
T,>T>T,,and (c) T,>T.

T'>T,, (b)



RAPID COMMUNICATIONS

R4198

SASAL undergoes a second collapse. For T <T,, the
SASAL is fully collapsed and its fractal dimension is 2
[20]. This sequence of phase transitions is strikingly simi-
lar to that found by Orlandini et al. [2] in their study of a
self-attracting self-avoiding trail on the Sierpinski gasket.

As we have already noted, for x =0 and y =1 the
SASAL can be mapped onto a lattice tree without self-
attraction. More generally, the SASAL reduces to a self-
attracting lattice tree with contact interactions for x =0
and 0<y =<1. As y is reduced from 1, the attraction be-
tween the branches of the tree becomes increasingly im-
portant, and, at a critical value of y, the tree collapses.
This collapse transition has recently been studied by ex-
act enumeration [21]. Now consider the case in which €,
is finite but is still greater than € . The collapse transi-
tion at T =T, should be in the same universality class as
the collapse of a self-attracting tree with contact interac-
tions in 2D. The transition that occurs at 7 =T has not
yet been studied, however. Monte Carlo or exact
enumeration studies of this phase transition would be of
considerable interest.

In summary, I have shown that for a range of parame-
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ter values, a certain self-attracting self-avoiding loop can
be mapped onto the hull of a percolation cluster in 2D.
This mapping was used to argue that the SASAL has
three phases, one of which is a ‘“branched polymer”
phase. If e, >¢€_, the collapse of the SASAL occurs in
two stages as the temperature is reduced: the SASAL
first collapses to form a “branched polymer,” and then at
lower temperatures collapses still further to become a
compact globule.

In this Rapid Communication, I considered a SASAL
on the hexagonal lattice with a particular kind of
monomer-monomer interaction, so that analytical results
could be obtained. However, I believe that the results ob-
tained here are quite general, and apply to any adsorbed
polymer loop whose inner “surface” attracts itself more
strongly than the outer “surface” does.
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